NECESSARY AND SUFFICIENT CONDITIONS FOR THE BOUNDEDNESS OF THE RIESZ POTENTIAL IN MODIFIED MORREY SPACES


Creative Commons License

Guliyev V. S., Hasanov J. J., ZEREN Y.

JOURNAL OF MATHEMATICAL INEQUALITIES, vol.5, no.4, pp.491-506, 2011 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 5 Issue: 4
  • Publication Date: 2011
  • Doi Number: 10.7153/jmi-05-43
  • Journal Name: JOURNAL OF MATHEMATICAL INEQUALITIES
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.491-506
  • Keywords: Riesz potential, fractional maximal function, modified Morrey space, Hardy-Littlewood-Sobolev inequality, Schodinger type operator, WEIGHTED NORM INEQUALITIES, SCHRODINGER-OPERATORS
  • Yıldız Technical University Affiliated: Yes

Abstract

We prove that the fractional maximal operator M-alpha and the Riesz potential operator I-alpha, 0 < alpha < n are bounded from the modified Morrey space (L) over tilde (1,lambda) (R-n) to the weak modified Morrey space W (L) over tilde (q,lambda) (R-n) if and only if, alpha/n <= 1 - 1/q <= alpha/(n - lambda) and from (L) over tilde (p,lambda) (R-n) to (L) over tilde (q,lambda) (R-n) if and only if, alpha/n <= 1/p - 1/q <= alpha/(n - lambda).