NECESSARY AND SUFFICIENT CONDITIONS FOR THE BOUNDEDNESS OF THE RIESZ POTENTIAL IN MODIFIED MORREY SPACES


Creative Commons License

Guliyev V. S., Hasanov J. J., ZEREN Y.

JOURNAL OF MATHEMATICAL INEQUALITIES, cilt.5, sa.4, ss.491-506, 2011 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 5 Sayı: 4
  • Basım Tarihi: 2011
  • Doi Numarası: 10.7153/jmi-05-43
  • Dergi Adı: JOURNAL OF MATHEMATICAL INEQUALITIES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.491-506
  • Anahtar Kelimeler: Riesz potential, fractional maximal function, modified Morrey space, Hardy-Littlewood-Sobolev inequality, Schodinger type operator, WEIGHTED NORM INEQUALITIES, SCHRODINGER-OPERATORS
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

We prove that the fractional maximal operator M-alpha and the Riesz potential operator I-alpha, 0 < alpha < n are bounded from the modified Morrey space (L) over tilde (1,lambda) (R-n) to the weak modified Morrey space W (L) over tilde (q,lambda) (R-n) if and only if, alpha/n <= 1 - 1/q <= alpha/(n - lambda) and from (L) over tilde (p,lambda) (R-n) to (L) over tilde (q,lambda) (R-n) if and only if, alpha/n <= 1/p - 1/q <= alpha/(n - lambda).