Synthesis of calcium phosphate nanomaterial from quail eggshell for cadmium removal from wastewater and its genotoxic/cytotoxic properties


Demir C., Bakırdere B. E., Zaman B. T., Öner M., DALGIÇ BOZYİĞİT G., Ergenler A., ...Daha Fazla

Environmental Monitoring and Assessment, cilt.196, sa.12, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 196 Sayı: 12
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s10661-024-13415-2
  • Dergi Adı: Environmental Monitoring and Assessment
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, ABI/INFORM, Agricultural & Environmental Science Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, Compendex, EMBASE, Environment Index, Food Science & Technology Abstracts, Geobase, Greenfile, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Ca3(PO4)2 nanomaterial, Cadmium, Cytotoxicity, Genotoxicity, Isotherm, Water treatment
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

In recent years, pollutants released into the environment from various sources threaten environmental health. Rapid industrialization and the constantly increasing needs of people facilitate the release of more hazardous wastes into the ecosystem. The presence of pollutants in water resources causes a wide range of adverse effects. In this study, calcium phosphate nanomaterial (Ca3(PO4)2 NM) was synthesized from biological waste eggshells for the cadmium removal in synthetic domestic wastewater, and a treatment method was developed using these NMs. The Ca3(PO4)2 NMs were produced by using a biowaste which provides the synthesis procedure greener approach. The biogenic NMs were used to remove toxic cadmium ions from wastewater samples. Cytotoxicity and genotoxicity studies of the synthesized NMs were also carried out, and their possible effects on the health of living organisms and the ecology were examined. In the developed method, the parameters affecting the removal of cadmium from wastewater samples were optimized and the removal efficiency was calculated by determining cadmium in a flame atomic absorption spectrophotometer system (FAAS). Synthetic domestic wastewater samples were utilized for evaluating the applicability of the developed treatment strategy. In addition, the adsorption capacity of the material for Cd2+ ion was calculated and the values obtained were modeled by using Langmuir adsorption isotherm (LAI). The calculated LAI parameters were within the appropriate limits, which proved that the developed NM can be used as an effective material for cadmium removal. Moreover, a new, rapid, and feasible synthesis strategy for the synthesis of Ca3(PO4)2 NM was presented in the literature. Graphical abstract: (Figure presented.)