Laser Welding of Ti6Al4V Titanium Alloy in Air and a Water Medium


Alhajhamoud M., Özbey S., Ilgaz M. A., Candan L., Çınar İ., Vukotic M., ...More

PROCEEDINGS (MDPI), vol.15, pp.1-16, 2022 (Scopus) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 15
  • Publication Date: 2022
  • Doi Number: 10.3390/ma15249088
  • Journal Name: PROCEEDINGS (MDPI)
  • Journal Indexes: Scopus, Directory of Open Access Journals
  • Page Numbers: pp.1-16
  • Keywords: laser welding, Ti6Al4V titanium, Nd, YAG laser, depth of penetration, laser material interaction
  • Yıldız Technical University Affiliated: Yes

Abstract

Ti6Al4V titanium alloys are widely used in a variety of scientific and industrial fields. Laser beam welding is one of the most effective techniques for the joining of titanium plates. The main objective of this study was to investigate the influence of the most important laser parameters on welding performance of titanium alloy in two different physical environments such as air and water (i.e., serum) media. Specifically, the laser beam welding of 2 mm thick Ti6Al4V samples was applied using an Nd:YAG laser in open-air welding using argon as a shielding gas, and in wet welding using a serum environment. The deepest penetration was achieved at −3 mm focal position with 11 J of laser energy in both investigated media (i.e., air and serum). The maximum hardness (1130 HV) was achieved for the focal position of −4 mm in serum medium while it was 795 HV for a focal position of −5 mm in air medium. The minimum (1200 µm and 800 µm) and maximum (1960 µm and 1900 µm) weld widths were observed for air and serum medium, respectively. After the welding process, martensite, massif martensite, and transformed martensite were observed in the microstructure of Ti6Al4V. To the best of our knowledge, the underwater wet welding of titanium alloy was carried out and reported for the first time in this study