ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, cilt.44, sa.2, ss.1685-1696, 2019 (SCI-Expanded)
Natural convection heat transfer along a vertical plate with uniform heat fluxes ranging from 400 to 1000 was investigated by using air. The local surface temperatures on the heated surface were calculated by utilizing correlations existing in the literature. Computational analysis was also performed to determine the local wall temperatures for natural convection. The results of computational analysis of the velocity distribution of the fluid in the hydrodynamic boundary layer are presented as well as the thermal distribution in the velocity boundary layer, respectively. The local temperatures determined by those correlations were compared both with each other and then with the results of the computational analysis. The local temperature results obtained in the computational analysis were in good agreement with one of those correlations and demonstrate that the increase in uniform wall heat flux causes both an increase in the local wall temperature and an increase in the velocity of air in the hydrodynamic boundary layer. It was observed that local wall temperature had risen with the increase in the distance from the plate edge.