Computationally semi-numerical technique for solving system of intuitionistic fuzzy differential equations with engineering applications

Shams M., KAUSAR N., Kousar S., Pamucar D., Ozbilge E., Tantay B.

Advances in Mechanical Engineering, vol.14, no.12, 2022 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 14 Issue: 12
  • Publication Date: 2022
  • Doi Number: 10.1177/16878132221142128
  • Journal Name: Advances in Mechanical Engineering
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Applied Science & Technology Source, Computer & Applied Sciences, INSPEC, Directory of Open Access Journals, Civil Engineering Abstracts
  • Keywords: analytical technique, engineering applications, fuzzy set, System of fuzzy differential equation, triangular intuitionistic fuzzy number
  • Yıldız Technical University Affiliated: Yes


Some complex problems in science and engineering are modeled using fuzzy differential equations. Many fuzzy differential equations cannot be solved by using exact techniques because of the complexity of the problems mentioned. We utilize analytical techniques to solve a system of fuzzy differential equations because they are simple to use and frequently result in closed-form solutions. The Generalized Modified Adomian Decomposition Method is developed in this article to compute the analytical solution to the linear system of intuitionistic triangular fuzzy initial value problems. The starting values in this case are thought of as intuitionistic triangular fuzzy numbers. Engineering examples, such as the Brine Tanks Problem, are used to demonstrate the proposed approach and show how the series solution converges to the exact solution in closed form or in series. The corresponding graphs at different levels of uncertainty show the example’s numerical outcomes. The graphical representations further demonstrate the effectiveness and accuracy of the proposed method in comparison to Taylor’s approaches and the classical Decomposition method.