TEMPO-functionalized zinc phthalocyanine: synthesis, magnetic properties, and its utility for electrochemical sensing of ascorbic acid


KORKUT S., Akyuz D., ÖZDOĞAN K., YERLİ Y., KOCA A., ŞENER M. K.

DALTON TRANSACTIONS, cilt.45, sa.7, ss.3086-3092, 2016 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 45 Sayı: 7
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1039/c5dt04513d
  • Dergi Adı: DALTON TRANSACTIONS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.3086-3092
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

Zinc(II) phthalocyanine (TEMPO-ZnPc), peripherally functionalized with 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) radicals is synthesized and its magneto structural and electrochemical behaviors are investigated. TEMPO-ZnPc shows multi-electron ring based reduction reactions and a TEMPO based oxidation reaction. Spectroelectrochemical measurements support these peak assignments. TEMPO-ZnPc is tested as a homogeneous and heterogeneous ascorbic acid (AA) sensor. Disappearance of TEMPO-ZnPc based reduction processes and the observation of new waves at around 0 and 1.20 V with respect to increasing AA concentration indicate the interaction of TEMPO-ZnPc with AA and usability of the complex as an electrochemical AA sensor. For practical usage as heterogeneous electrocatalysts for AA sensing, a glassy carbon electrode (GCE) is coated with TEMPO-ZnPc (GCE/TEMPO-ZnPc) and this modified electrode is tested as a heterogeneous AA sensor. The redox peak of GCE/TEMPO-ZnPc at 0.81 V decreases the peak current while a new wave is observed at 0.65 V during the titration of the electrolyte with AA. GCE/TEMPO-ZnPc sense AA with 1.75 x 10(-6) mol dm(-3) LOD with a sensitivity of 1.89 x 10(3) A cm mol(-1).