On the numerical solutions of high order stable difference schemes for the hyperbolic multipoint nonlocal boundary value problems


Yıldırım Ö., Uzun M.

APPLIED MATHEMATICS AND COMPUTATION, cilt.254, ss.210-218, 2015 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 254
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1016/j.amc.2014.12.117
  • Dergi Adı: APPLIED MATHEMATICS AND COMPUTATION
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.210-218
  • Anahtar Kelimeler: Abstract hyperbolic equations, Stability, Difference equations, Nonlocal and multipoint BVPs, EQUATIONS
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

In this article, we consider third and fourth order of accuracy stable difference schemes for the approximate solutions of hyperbolic multipoint nonlocal boundary value problem in a Hilbert space H with self-adjoint positive definite operator A. We present stability estimates and numerical analysis for the solutions of the difference schemes using finite difference method. (C) 2014 Elsevier Inc. All rights reserved.