Atıf İçin Kopyala
Anebri A., Mahdou N., Tekir Ü., Yıldız E.
ALGEBRA COLLOQUIUM, cilt.30, sa.03, ss.481-492, 2023 (SCI-Expanded)
-
Yayın Türü:
Makale / Tam Makale
-
Cilt numarası:
30
Sayı:
03
-
Basım Tarihi:
2023
-
Doi Numarası:
10.1142/s1005386723000391
-
Dergi Adı:
ALGEBRA COLLOQUIUM
-
Derginin Tarandığı İndeksler:
Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, MathSciNet, zbMATH
-
Sayfa Sayıları:
ss.481-492
-
Yıldız Teknik Üniversitesi Adresli:
Evet
Özet
Let [Formula: see text] be a commutative ring with nonzero identity and [Formula: see text] be a positive integer. In this paper, we introduce and investigate a new subclass of [Formula: see text]-[Formula: see text]-absorbing primary ideals, which are called [Formula: see text]-[Formula: see text]-ideals. Let [Formula: see text] be a function, where [Formula: see text] denotes the set of all ideals of [Formula: see text]. A proper ideal [Formula: see text] of [Formula: see text] is called a [Formula: see text]-[Formula: see text]-ideal if [Formula: see text] and [Formula: see text] imply that the product of [Formula: see text] with [Formula: see text] of [Formula: see text] is in [Formula: see text] for all [Formula: see text]. In addition to giving many properties of [Formula: see text]-[Formula: see text]-ideals, we also use the concept of [Formula: see text]-[Formula: see text]-ideals to characterize rings that have only finitely many minimal prime ideals.