Film formation stages for poly(vinyl acetate) latex particles: a photon transmission study


Kara S., Pekcan O., Sarac A., Arda E.

COLLOID AND POLYMER SCIENCE, vol.284, no.10, pp.1097-1105, 2006 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 284 Issue: 10
  • Publication Date: 2006
  • Doi Number: 10.1007/s00396-006-1486-7
  • Journal Name: COLLOID AND POLYMER SCIENCE
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Page Numbers: pp.1097-1105
  • Yıldız Technical University Affiliated: Yes

Abstract

Photon transmission technique was used to monitor the evolution of transparency during film formation from poly(vinyl acetate) (PVAc) latex particles. The latex films were prepared below the glass transition temperature (T-g) of PVAc. These films were annealed at elevated temperatures in various time intervals above the T-g of PVAc. It is observed that transmitted photon intensity (I-tr) from these films increased as the annealing temperature is increased. It is seen from I (tr) curves that there are two film formation stages. These successive stages are named void closure (viscous flow) and interdiffusion. The activation energies for viscous flow (Delta H) and backbone motion (Delta E (b)) were obtained by using well-defined models. The averaged values of the backbone (Delta E (b)) and the viscous flow activation energies (Delta H) were found to be 188.6 and 5.6 kcal/mol, respectively. The minimum film formation (tau (M),T (M)) and healing points (tau (H),T (H)) were determined. Minimum film formation (Delta E (M)) and healing activation energies (Delta E (H)) were measured using these time-temperature pairs. Delta E (M) and Delta E (H) were found to be 32.5 and 28.3 kcal/mol, respectively.