Kinematic hardening rules for modeling uniaxial and multiaxial ratcheting


Colak Ö. Ü.

MATERIALS & DESIGN, cilt.29, ss.1575-1581, 2008 (SCI İndekslerine Giren Dergi) identifier identifier

  • Cilt numarası: 29 Konu: 8
  • Basım Tarihi: 2008
  • Doi Numarası: 10.1016/j.matdes.2007.11.003
  • Dergi Adı: MATERIALS & DESIGN
  • Sayfa Sayıları: ss.1575-1581

Özet

Ratcheting, which is the strain accumulation observed under the unsymmetrical stress controlled loading and non-proportional loadings, is modeled using the simplified viscoplasticity theory based on overstress (VBO). The influences of kinematic hardening laws on the uniaxial and multiaxial non-proportional ratcheting behavior of CS 1026 carbon steel have been investigated. The following kinematic hardening rules have been considered: the classical kinematic hardening rule, the kinematic hardening rules introduced by Armstrong-Frederick, Burlet-Cailletaud and the modified Burlet-Cailletaud. The investigated loading conditions include uniaxial stress controlled test with non-zero mean stress, and axial strain controlled cyclic test of thin-walled tubular specimen in the presence of constant pressure. Numerical results are compared with the experimental data obtained by Hassan and Kyriakides [Hassan T, Kyriakides S. Ratcheting in cyclic plasticity, part 1: uniaxial behavior. Int J Plast 1992;8:91-116] and Hassan et al. [Hassan T, Corona E, Kyriakides S. Ratcheting in cyclic plasticity, part 1: multiaxial behavior. Int J Plast 1992;8:117-146]. It is observed that all investigated kinematic hardening rules do not improve ratcheting behavior under multiaxial loading, but over-prediction still exists. (C) 2007 Elsevier Ltd. All rights reserved.