Stable difference schemes for the hyperbolic problems subject to nonlocal boundary conditions with self-adjoint operator


Ashyralyev A., Yildirim O.

APPLIED MATHEMATICS AND COMPUTATION, cilt.218, ss.1124-1131, 2011 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 218
  • Basım Tarihi: 2011
  • Doi Numarası: 10.1016/j.amc.2011.03.155
  • Dergi Adı: APPLIED MATHEMATICS AND COMPUTATION
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1124-1131
  • Yıldız Teknik Üniversitesi Adresli: Hayır

Özet

In the present paper the first and second orders of accuracy difference schemes for the numerical solution of multidimensional hyperbolic equations with nonlocal boundary and Dirichlet conditions are presented. The stability estimates for the solution of difference schemes are obtained. A method is used for solving these difference schemes in the case of one dimensional hyperbolic equation. (C) 2011 Elsevier Inc. All rights reserved.