2022 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2022, Taipei City, Tayvan, 18 - 22 Temmuz 2022, (Tam Metin Bildiri)
Light field imaging enables post-capture actions such as refocusing and changing view perspective by capturing both spatial and angular information. However, capturing richer information of the 3D scene results in a huge amount of data. To improve the compression efficiency of the existing light field compression methods, we investigate the impact of light field super-resolution approaches (both spatial and angular super-resolution) on the compression efficiency. To this end, firstly, we downscale light field images over (i) spatial resolution, (ii) angular resolution, and (iii) spatial-angular resolution and encode them using Versatile Video Coding (VVC). We then apply a set of light field super-resolution deep neural networks to reconstruct light field images in their full spatial-angular resolution and compare their compression efficiency. Experimental results show that encoding the low angular resolution light field image and applying angular super-resolution yield bitrate savings of 51.16% and 53.41% to maintain the same PSNR and SSIM, respectively, compared to encoding the light field image in high-resolution.