Life Cycle Assessment of Green Methanol Production Based on Multi-Seasonal Modeling of Hybrid Renewable Energy and Storage Systems


Güleroğlu H., YUMURTACI Z.

Sustainability (Switzerland), cilt.17, sa.2, 2025 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 17 Sayı: 2
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/su17020624
  • Dergi Adı: Sustainability (Switzerland)
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Social Sciences Citation Index (SSCI), Scopus, Aerospace Database, Agricultural & Environmental Science Database, CAB Abstracts, Communication Abstracts, Food Science & Technology Abstracts, Geobase, INSPEC, Metadex, Veterinary Science Database, Directory of Open Access Journals, Civil Engineering Abstracts
  • Anahtar Kelimeler: alkaline water electrolysis, carbon capture and purification, dual-comparative analytical framework, environmental implication, hybrid energy storage systems, LCA of green methanol, lithium-ion batteries, renewable energy, seasonal energy variability, solar-wind hybrid systems, vanadium redox flow batteries, water consumption
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

This study evaluates the environmental implications of green methanol production under seasonal energy variability through a dual-comparative analytical framework. The research employs ReCiPe 2016 Endpoint (H) methodology to assess four seasonal renewable energy configurations (with varying solar–wind ratios across seasons) against conventional grid-based production, utilizing a hybrid battery storage system combining lithium-ion and vanadium redox flow technologies. The findings reveal significant environmental benefits, with seasonal renewable configurations achieving 24.38% to 28.26% reductions in global warming potential compared to conventional methods. Monte Carlo simulation (n = 20,000) confirms these improvements across all impact categories. Our process analysis identifies hydrogen production as the primary environmental impact contributor (74–94%), followed by carbon capture (5–13%) and methanol synthesis (0.5–4.5%). Water consumption impacts show seasonal variation, ranging from 16.55% in summer to 11.62% in winter. There is a strong positive correlation between hydrogen production efficiency and solar energy availability, suggesting that higher solar energy input contributes to improved production outcomes. This research provides a framework for optimizing sustainable methanol production through seasonal renewable energy integration, offering practical insights for industrial implementation while maintaining production stability through effective energy storage solutions.