On a two-weighted estimation of maximal operator in the Lebesgue space with variable exponent


Mamedov F. I., ZEREN Y.

ANNALI DI MATEMATICA PURA ED APPLICATA, cilt.190, sa.2, ss.263-275, 2011 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 190 Sayı: 2
  • Basım Tarihi: 2011
  • Doi Numarası: 10.1007/s10231-010-0149-y
  • Dergi Adı: ANNALI DI MATEMATICA PURA ED APPLICATA
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.263-275
  • Anahtar Kelimeler: Maximal functions, Weighted Lebesgue spaces, Variable exponent, Two-weight inequality, NORM INEQUALITIES, REGULARITY
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

We study two-weight inequalities with general-type weights for Hardy-Littlewood maximal operator in the Lebesgue spaces with variable exponent. The exponent function satisfies log-Holder-type local continuity condition and decay condition in infinity. The right-hand side weight to the certain power satisfies the doubling condition. Sawyer-type two-weight criteria for fractional maximal functions are derived.