Calcium silicate-based catalytic filters for partial oxidation of methane and biogas mixtures: Preliminary results

Tezel E., Balkanli Unlu E., FİGEN H. E. , BAYKARA Z. S.

International Journal of Hydrogen Energy, 2020 (SCI Expanded İndekslerine Giren Dergi) identifier


© 2020 Hydrogen Energy Publications LLCDevelopment and testing of catalytic filters for partial oxidation of methane to increase hydrogen production in a biomass gasification process constitute the subject of the present study. Nickel, iron and lanthanum were coated on calcium silicate filters via co-impregnation technique, and catalytic filters were characterized by ICP-MS, XPS, XRD, TEM, TGA, TPR and BET techniques. The influences of varying reaction temperature and addition of Fe or La to Ni-based catalytic filters on methane conversion, and hydrogen selectivity have been investigated in view of preliminary results obtained from reactions with 6% methane-nitrogen mixture, and catalytic filters were tested with model biogas mixtures at optimum reaction temperature of each filter which were 750 °C or 850 °C. Approximately 93% methane conversion was observed with nearly 6% methane-nitrogen mixture, and 97.5% methane conversion was obtained with model biogas containing CH4 which is 6%, CO2, CO, and N2 at 750 °C. These results indicate that calcium silicate provides a suitable base material for catalytic filters for partial oxidation of methane and biogas containing methane.