Distant and Recent Historical Data Fusion for Improving Short- and Medium-Term Traffic Forecasting


Creative Commons License

Usta M., TÜRKMEN ÇİLİNGİR H. İ., GÜVENSAN M. A.

APPLIED SCIENCES-BASEL, cilt.15, sa.24, 2025 (SCI-Expanded, Scopus) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 15 Sayı: 24
  • Basım Tarihi: 2025
  • Doi Numarası: 10.3390/app152413130
  • Dergi Adı: APPLIED SCIENCES-BASEL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Compendex, INSPEC, Directory of Open Access Journals
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

Traffic became a major issue in large and crowded metropolitan cities and might cause people to waste in the order of days within a year. It is notable that traffic speed estimation problems were addressed in three main horizons: short term, medium term, and long term. In this paper, we both introduce a novel network feeding strategy improving short- and medium-term traffic forecasting and define the aforementioned horizons by evaluating the prediction results up to 6 h. We combined the advantages of both distant and recent historical data by developing two different Recurrent Neural Network (RNN)-based methods, H-LSTM and H-GRU, that employ Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks. The proposed Historical Average Long Short-Term Memory (H-LSTM) model demonstrates superior performance compared to traditional methods, as it is capable of integrating both the typical long-term traffic patterns observed in a specific location and the daily fluctuations, such as accidents, unanticipated events, weather conditions, and human activities on particular days. We achieve up to 20% improvement, especially for rush hours, compared to the traditional approach, i.e., exploiting only recent historical data. H-LSTM could make predictions with an average of +/- 7.5 km/h error margin up to 6 h for a given location.