Detection and Classification of Traffic Signs with Deep Morphological Networks Derin Morfolojik Aglar ile Trafik Isaretlerinin Tespiti ve Siniflanmasi

Zerey F., Samil Fidan M., USLU E.

2021 Innovations in Intelligent Systems and Applications Conference, ASYU 2021, Elazığ, Turkey, 6 - 08 October 2021 identifier

  • Publication Type: Conference Paper / Full Text
  • Doi Number: 10.1109/asyu52992.2021.9599039
  • City: Elazığ
  • Country: Turkey
  • Keywords: classification, convolutional network, deep morphological network, detection, traffic signs
  • Yıldız Technical University Affiliated: Yes


© 2021 IEEE.The developments of computer aided driving systems detection and classification of traffic signs getting moreimportant everyday. In this subject there has been many different methods proposed and used. The morphological features of trafficsigns carries a lot of significance in terms of classification. The main idea of this study is using morphological features in deep learning network to enhance classification success rate. In this study the use of deep morphological networks is proposed for the sake of better utilizing morphological features in traffic sign efficiently.The results of deep morphological networks and convolutional neural networks are compared and deep morphological networks shows higher classification success rate.