ANALYTICAL AND NUMERICAL ASPECT OF COINCIDENCE POINT PROBLEM OF QUASI-CONTRACTIVE OPERATORS


Creative Commons License

Gursoy F., Erturk M., Khan A. R., KARAKAYA V.

PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, cilt.105, sa.119, ss.101-121, 2019 (ESCI) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 105 Sayı: 119
  • Basım Tarihi: 2019
  • Doi Numarası: 10.2298/pim1919101g
  • Dergi Adı: PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD
  • Derginin Tarandığı İndeksler: Emerging Sources Citation Index (ESCI), Scopus
  • Sayfa Sayıları: ss.101-121
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

We propose a new Jungck-S iteration method for a class of quasi-contractive operators on a convex metric space and study its strong convergence, rate of convergence and stability. We also provide conditions under which convergence of this method is equivalent to Jungck-Ishikawa iteration method. Some numerical examples are provided to validate the theoretical findings obtained herein. Our results are refinement and extension of the corresponding ones existing in the current literature.