On Fourth-Order Stable Difference Scheme for Hyperbolic Multipoint NBVP


Yıldırım Ö., Uzun M.

NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, cilt.38, ss.1305-1324, 2017 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 38
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1080/01630563.2017.1316998
  • Dergi Adı: NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1305-1324
  • Anahtar Kelimeler: Abstract hyperbolic equations, difference equations, nonlocal and multipoint boundary value problems, stability, 35L90, 65N12, 39A14, 34B10, BOUNDARY-VALUE-PROBLEMS, HIGH-ORDER, EQUATIONS
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

This paper presents a fourth order of accuracy unconditionally stable difference scheme for the approximate solution of multipoint nonlocal boundary value hyperbolic problem in a Hilbert space with a self-adjoint positive definite operator. Stability estimates for the solution of this difference scheme are established. To support the theoretical statements, some results of numerical experiments are presented using finite difference method.