On Equivalent Conditions for the General Weighted Hardy Type Inequality in Space Lp(.)


Mamedov F. I., ZEREN Y.

ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, cilt.31, sa.1, ss.55-74, 2012 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 31 Sayı: 1
  • Basım Tarihi: 2012
  • Doi Numarası: 10.4171/zaa/1448
  • Dergi Adı: ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.55-74
  • Anahtar Kelimeler: Hardy operator, Hardy inequality, variable exponents, weighted inequality, INTEGRAL CONDITIONS, THEOREM
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

We study the Hardy type two-weighted inequality for the multidimensional Hardy operator in the norms of generalized Lebesgue spaces L-p(.)(R-n) In tins way we prove equivalent conditions for L-P(.) -> L-q(.) boundedness of Hardy operator in the case of exponents q(0) >= p(0), q(infinity) >= p (infinity). We also prove that the condition for such inequality to hold coincides with condition for validity of two weighted Hardy inequalities with constant exponents, if we require the exponents to be regular near zero and at infinity.