Implementation of simple and effective fine droplet formation-based spray-assisted liquid phase microextraction for the simultaneous determination of twenty-nine endocrine disruptor compounds and pesticides in rock, soil, water, moss, and feces samples from antarctica using gas chromatography-mass spectrometry


Creative Commons License

Zaman B. T., Bozyiğit G., Şaylan M., Koçoğlu E. S., Kartoğlu B., Aydın E. S., ...Daha Fazla

Environmental Science and Pollution Research, cilt.31, sa.7, ss.10920-10933, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 31 Sayı: 7
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/s11356-023-31750-8
  • Dergi Adı: Environmental Science and Pollution Research
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, IBZ Online, ABI/INFORM, Aerospace Database, Agricultural & Environmental Science Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), BIOSIS, CAB Abstracts, EMBASE, Environment Index, Geobase, MEDLINE, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.10920-10933
  • Anahtar Kelimeler: Antarctic region, Endocrine-disrupting compounds, Gas chromatography, Moss, Seawater, Soil
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

This study established the simultaneous determination of the selected endocrine-disrupting compounds (EDCs) and pesticides in rock, soil, water, moss, and feces samples collected from the Antarctic region. The spray-assisted droplet formation-based liquid phase microextraction (SADF-LPME) coupled to GC–MS system was developed and validated for the screening and monitoring of 29 selected EDCs and pesticides. Binary solvent system, 1:1 (v/v) dichlormethane: 1,2-dichloroethane mixture was employed as an extraction solvent and sprayed onto sample or standard solutions using a straightforward and practical spray apparatus. The factors affecting the extraction process such as extraction solvent type and ratio, extraction solvent volume (spray repetition), vortexing period, and sample pH were properly optimized. Analytical figures of the merit of the method were recorded under the optimal extraction/chromatographic conditions. The LOD, LOQ, and enhancement factor were in the range of 1.0 to 6.6 ng/g, 3.2 to 22.1 ng/g, and 3.7 to 158.9, respectively. The method demonstrated a good linear working range for all the selected analytes with proper coefficients of determination. The usability and reliability of the microextraction strategy was confirmed using seawater, moss, and soil samples, and the %recoveries were within an acceptable range (> 70%) for all examined samples. The environmental samples collected from the Horseshoe and Faure Islands of the Antarctica region were analyzed to assess the potential pollution of EDCs and pesticides. This method has the potential to be employed for the analysis of EDCs in routine analytical laboratories and for controlling and screening the organic pollutant content of different environmental samples.