North American Journal of Economics and Finance, cilt.69, 2024 (SSCI)
This research contributes to bank liquidity risk management by employing supervised machine learning models to provide banks with early warnings of liquidity stress using market-based indicators. Identifying increasing levels of stress as early as possible provides management with a crucial window of time in which to assess and develop a potential response. This study uses publicly available data from 2007 to 2021, covering two severe stress periods: the 2007–2008 global financial crisis and the COVID-19 crisis. The current version of the developed model then applies backtesting using the data from the COVID-19 crisis. The findings of this study show that the ensemble model with the RUSBoost algorithm predicts “red” and “amber” days with a success rate 21% greater than the average of other machine learning models; thus, it can greatly contribute to bank risk management.