Observerless Scheme for Sensorless Speed Control of PMSM Using Direct Torque Control Method with LP Filter


Bekiroglu N., Ozcira S.

ADVANCES IN ELECTRICAL AND COMPUTER ENGINEERING, cilt.10, sa.3, ss.78-83, 2010 (SCI-Expanded) identifier identifier

Özet

In this study, direct torque control (DTC) of a permanent magnet synchronous motor is realized with a sensorless speed control technique without using an observer. Space vector pulse width modulation (SVPWM) technique is applied in order to determine the switching sequence of the voltage source inverter. Torque and flux, the main variables of the DTC, are estimated by using the mathematical model of the motor. Estimated torque and flux values are compared with their references in every control cycle. Then, according to the torque and flux demand, the voltage vector is constituted. In the proposed control scheme, speed is estimated by using flux calculations and a PI controller is used to process the torque and flux errors. Furthermore, a low-pass (LP) filter is implemented within the proposed system for voltage and current harmonics suppression. The results proved that proposed scheme for the DTC provides the speed control under various torque demands without employing a sensor. The proposed system performs very well for a sensorless operation and effectively eliminates the harmonics due to the LP filter.