Environmental Science and Pollution Research, cilt.30, sa.1, ss.1333-1356, 2023 (SCI-Expanded)
In this study, the surface properties of Laurus nobilis L. were determined by inverse gas chromatography. From this, the surface of Laurus nobilis L. was found to be an acidic (KD/ KA= 0.95). Then, the adsorption of hazardous crystal violet dye on Laurus nobilis L. was examined. For the adsorption process, the optimum conditions were determined as contact time (60 min), adsorbent dosage (1.0 g/L), agitation rate (200 rpm), and initial pH (≅ 7). The efficiencies of initial concentration, contact time, temperature, and their binary combinations on the improvement of adsorption percentage were statistically investigated via three different two-way ANOVA analyses. Adsorption data were applied to different isotherms, and it was determined that the Langmuir isotherm (r2 = 0.9998) was the most suitable isotherm for the adsorption process. The qm value was calculated as 400.0 mg/g at 25 °C from the Langmuir isotherm. According to kinetic models, it was observed that the adsorption occurred in three steps. According to enthalpy (+ 7.52 kJ/mol), activation energy (+ 8.91 kJ/mol), and Gibbs free energy (− 30.0 kJ/mol) values, it was determined that the adsorption occurred endothermically and spontaneously. As a result of reusability studies, it was determined that the adsorbent could be used repeatedly. Graphical abstract: [Figure not available: see fulltext.]