APPLIED SCIENCES, cilt.14, sa.4, ss.1667-1692, 2024 (SCI-Expanded)
In this study, full-scale laboratory tests were conducted on a 315 mm diameter HDPE pipe under shallow buried and localised surface loading conditions to investigate the effects of pipe deflection and arching on stress distribution and the lateral earth pressure coefficient. The tests were validated using 2D finite element software, and further analyses were carried out through parametric studies. These studies considered variations in pipe stiffness, burial depth, backfill properties and pavement stiffness to increase the reliability of the test results. For a shallowly buried HDPE pipe, a comprehensive explanation is provided regarding the evolution of the lateral earth pressure coefficient within the central soil prism. Initially set at Ko conditions, this coefficient tends to shift towards Kp with increasing arching and transitions to Ka with weakening arching. The findings suggest that stress predictions in the crown region of shallow buried flexible pipes are achievable through the application of Terzaghi’s arching theory, contingent upon an accurate estimation of the lateral earth pressure coefficient for the central soil prism. Furthermore, the horizontal deflection of the pipe at the springline results in compressive behaviour and passive effects in the surrounding backfill in this specific region. This situation demonstrates that the horizontal stresses at the springline and the lateral earth pressure coefficient can be reliably estimated by considering them as functions of the horizontal deflection of the pipe.