Dual Quaternions and Dual Quaternionic Curves


Creative Commons License

Dağdeviren A., Yüce S.

FILOMAT, cilt.33, sa.4, ss.1037-1046, 2019 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 33 Sayı: 4
  • Basım Tarihi: 2019
  • Doi Numarası: 10.2298/fil1904037d
  • Dergi Adı: FILOMAT
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1037-1046
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

After a brief review of the different types of quaternions, we develop a new perspective for dual quaternions with dividing two parts. Due to this new perspective, we will define the isotropic and non-isotropic dual quaternions. Then we will also give the basic algebraic concepts about the dual quaternions. Moreover, we define isotropic dual quaternionic curves and non-isotropic dual quaternionic curves. Via these definitions we find Serret-Frenet formulae for isotropic dual quaternionic curves. Finally, we will use these results to derive the Serret-Frenet formulae for non-isotropic dual quaternionic curves.