Analysis of an individual-based influenza epidemic model using random forest metamodels and adaptive sequential sampling


Edali M., YÜCEL G.

SYSTEMS RESEARCH AND BEHAVIORAL SCIENCE, cilt.37, sa.6, ss.936-958, 2020 (SSCI) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 37 Sayı: 6
  • Basım Tarihi: 2020
  • Doi Numarası: 10.1002/sres.2763
  • Dergi Adı: SYSTEMS RESEARCH AND BEHAVIORAL SCIENCE
  • Derginin Tarandığı İndeksler: Social Sciences Citation Index (SSCI), Scopus, International Bibliography of Social Sciences, ABI/INFORM, Aerospace Database, Business Source Elite, Business Source Premier, Communication Abstracts, Compendex, INSPEC, Metadex, Political Science Complete, Psycinfo, zbMATH, Civil Engineering Abstracts
  • Sayfa Sayıları: ss.936-958
  • Anahtar Kelimeler: adaptive sequential sampling, FluTE, individual-based modelling, metamodeling, rule extraction
  • Yıldız Teknik Üniversitesi Adresli: Hayır

Özet

This study proposes a three-step procedure for the analysis of input-response relationships of dynamic models, which enables the analyst to develop a better understanding about the dynamics of the system. The main building block of the procedure is a random forest metamodel capturing the input-output relationships. We utilize an active learning approach as the second step to improve the accuracy of the metamodel. In the last step, we develop a novel way to present the information captured by the metamodel as a set of intelligible IF-THEN rules. For illustration, we use the FluTE model, which is an individual-based influenza epidemic model. We observe that the number of daily applicable vaccines determines the success of an intervention strategy the most. Another critical observation is that when the daily available vaccines are constrained, nonpharmaceutical strategies should be incorporated to reduce the extent of the outbreak.