New tool for evaluation of performance of wastewater treatment plant: Artificial neural network


Cinar O.

PROCESS BIOCHEMISTRY, cilt.40, sa.9, ss.2980-2984, 2005 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 40 Sayı: 9
  • Basım Tarihi: 2005
  • Doi Numarası: 10.1016/j.procbio.2005.01.012
  • Dergi Adı: PROCESS BIOCHEMISTRY
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.2980-2984
  • Anahtar Kelimeler: Pelham wastewater treatment plant, artificial neural network, Kohonen self-organizing feature maps, ACTIVATED-SLUDGE PROCESS, COD SIMULATION-MODEL, CONSTRUCTION
  • Yıldız Teknik Üniversitesi Adresli: Hayır

Özet

Kohonen self-organizing feature maps, a method of artificial intelligence method, was used to classify operational data of Pelham wastewater treatment plant and to determine the reasons for high effluent concentrations of biological oxygen demand (BOD), total suspended solids (TSS) and fecal coliform in this study. The reasons causing high effluent concentrations of these parameters were low pH in the biological reactor and high solid retention time (SRT). (c) 2005 Elsevier Ltd. All rights reserved.