THE GENERALIZED GEGENBAUER-HUMBERTS WAVELET FOR SOLVING FRACTIONAL DIFFERENTIAL EQUATIONS


Creative Commons License

Alkhalissi J. H. S., EMİROĞLU İ., SEÇER A., Bayram M.

THERMAL SCIENCE, cilt.24, 2020 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 24
  • Basım Tarihi: 2020
  • Doi Numarası: 10.2298/tsci20s1107a
  • Dergi Adı: THERMAL SCIENCE
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Directory of Open Access Journals
  • Anahtar Kelimeler: block-pulse functions, operational matrix or integration, the generalized Gegenbauer-Humberts polynomial, fractional calculus, orthogonal polynomials
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

In this paper we present a new method of wavelets, based on generalized Gegenbauer-Humberts polynomials, named generalized Gegenbauer-Humberts wavelets. The operational matrix of integration are derived. By using the proposed method converted linear and non-linear fractional differential equation a system of algebraic equations. In addition, discussed some examples to explain the efficiency and accuracy of the presented method.