A Semi-analytical Method for TE Scattering from Arbitrary Shaped Radially Inhomogeneous Cylindrical Shells at Normal Incidence

Gürbüz T. U., Aslanyürek B.

2023 Photonics and Electromagnetics Research Symposium, PIERS 2023, Prague, Czech Republic, 3 - 06 July 2023, pp.65-70 identifier

  • Publication Type: Conference Paper / Full Text
  • Doi Number: 10.1109/piers59004.2023.10221511
  • City: Prague
  • Country: Czech Republic
  • Page Numbers: pp.65-70
  • Yıldız Technical University Affiliated: Yes


Radially inhomogeneous cylindrical shells, whose electrical properties vary contin-uously along the radial direction only, are encountered in various engineering applications. In some of these applications, circular radially inhomogeneous shells can be deformed with notches or grooves or can be used for shielding noncircular cores. Previously, we proposed a fast meshless method to compute the electromagnetic field that is scattered from such arbitrary shaped radi-ally inhomogeneous cylindrical shells when they are normally illuminated by TMz plane waves. Here, we adapt this method to the TMz illumination case. In this method, the longitudinal field component (Ez for the TMz case, Hz for the TMz case) is represented as a series of special functions, which is the general solution of a governing differential equation, at each layer (the core, the shell, and the outermost medium). In the inhomogeneous shell, the governing differential equations and their general solutions are different for the TMz and ' TMz cases as well as for different inhomogeneity profiles. In order to determine the unknown coefficients of the series rep-resentations of the fields, the boundary conditions are imposed and a procedure based on Fourier series expansion of the fields on boundaries and the orthogonality of complex exponentials is applied. In the TMz case, differently from the TMz case, the boundary condition related to the transverse field components includes complex discontinuity terms, necessitating a modification in the procedure. Numerical results show that the proposed method is accurate and effective also for the TMz illumination case.