Compression of hyperspectral images using adaptive luminance transform Hiperspektral görüntülerin uyarlamali işiklilik dönüşümü ile sikiştirilmasi


Can E., KARACA A. C., Danisman M., URHAN O., Gullu M. K.

26th IEEE Signal Processing and Communications Applications Conference, SIU 2018, İzmir, Türkiye, 2 - 05 Mayıs 2018, ss.1-4 identifier

  • Yayın Türü: Bildiri / Tam Metin Bildiri
  • Cilt numarası:
  • Doi Numarası: 10.1109/siu.2018.8404763
  • Basıldığı Şehir: İzmir
  • Basıldığı Ülke: Türkiye
  • Sayfa Sayıları: ss.1-4
  • Anahtar Kelimeler: 3D-DCT, Correlation matrix, Luminance transform
  • Yıldız Teknik Üniversitesi Adresli: Hayır

Özet

© 2018 IEEE.In this paper, compression of hyperspectral images with luminance transform is explained. First, similar image bands are grouped on hyperspectral image and luminance transform is performed independently on these groups. After luminance transform, compression is carried out by using discrete cosine transform (3D-DCT), quantization and entropy coding, for each group. In experimental studies, compression performances are measured using signal-to-noise ratio and bit rates. The proposed method increases signal-to-noise ratio 10 dB at 0.1 bit-per-pixel compared to 3D-DCT based compression.