Wear Behavior of Aluminum Matrix Hybrid Composites Fabricated through Friction Stir Welding Process


Kurt H. I., Oduncuoglu M., Asmatulu R.

JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, cilt.23, sa.10, ss.1119-1126, 2016 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 23 Sayı: 10
  • Basım Tarihi: 2016
  • Doi Numarası: 10.1016/s1006-706x(16)30165-0
  • Dergi Adı: JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.1119-1126
  • Anahtar Kelimeler: aluminum alloy, friction stir processing, wear, hybrid composite, modeling, ULTIMATE TENSILE-STRENGTH, MECHANICAL-PROPERTIES, SURFACE COMPOSITE, MICROSTRUCTURE, PARAMETERS, FORMULATION, PARTICLES, PLATE, CNTS
  • Yıldız Teknik Üniversitesi Adresli: Hayır

Özet

Effects of friction stir processing (FSP) parameters and reinforcements on the wear behavior of 6061-T6 based hybrid composites were investigated. A mathematical formulation was derived to calculate the wear volume loss of the composites. The experimental results were contrasted with the results of the proposed model. The influences of sliding distance, tool traverse and rotational speeds, as well as graphite (Gr) and titanium carbide (TiC) volume fractions on the wear volume loss of the composites were also investigated using the prepared formulation. The results demonstrated that the wear volume loss of the composites significantly increased with increasing sliding distance, tool traverse speed, and rotational speed; while the wear volume loss decreased with increasing volume fraction of the reinforcements. A minimum wear volume loss for the hybrid composites with complex reinforcements was specified at the inclusion ratio of 50% TiC+ Al2O3, because of improved lubricant ability, as well as resistance to brittleness and wear. New possibilities to develop wear-resistant aluminum-based composites for different industrial applications were proposed.