Water monitoring with an automated smart sensor supported with solar power for real-time and long range detection of ferrous iron


ÖZER T., Agir I., Borch T.

Analyst, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1039/d4an00055b
  • Dergi Adı: Analyst
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Aqualine, Aquatic Science & Fisheries Abstracts (ASFA), CAB Abstracts, Chemical Abstracts Core, Chimica, Communication Abstracts, Compendex, EMBASE, Food Science & Technology Abstracts, Metadex, Pollution Abstracts, Veterinary Science Database, Civil Engineering Abstracts
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

Low-power and smart sensing systems for iron detection are necessary for in situ monitoring of water quality. Here, a potentiometric Fe2+-selective electrode (ISE) was fabricated based on cyanomethyl N-methyl-N-phenyl dithiocarbamate for the first time as an ionophore. Under optimal conditions, the ISE showed a Nernstian slope of 29.76 ± 0.6 mV per decade for Fe2+ ions over a wide concentration range from 1.0 × 10-1 to 1.0 × 10-5 M with a lower detection limit (LOD) of 1.0 × 10-6 M. The ISE interference of various cations on the potentiometric response was also investigated. The ISE had a response time less than 3 s and the lifetime was two months. Also, an automated, long-range (LoRa), wireless enabled sampling microfluidic device powered with a solar panel as an autonomous power source was developed for a continuous sampling and sensing process. The sensing platform was employed in the determination of Fe2+ in acid mine drainage and spiked water samples with an average recovery of 100.7%. This simple, inexpensive (below $350), portable sensing platform will allow for rapid real-time monitoring of ground-, drinking-, and industrial waters contaminated with iron.