Cytotoxicity of Silica Nanoparticles with Transcaucasian Nose-Horned Viper, Vipera ammodytes transcaucasiana, Venom on U87MG and SHSY5Y Neuronal Cancer Cells


CELEN C., Kececiler C. , Karis M., Gocmen B., YESIL-CELIKTAS O., NALBANTSOY A.

APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, vol.186, no.2, pp.350-357, 2018 (Journal Indexed in SCI) identifier identifier identifier

  • Publication Type: Article / Article
  • Volume: 186 Issue: 2
  • Publication Date: 2018
  • Doi Number: 10.1007/s12010-018-2742-2
  • Title of Journal : APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY
  • Page Numbers: pp.350-357

Abstract

Highly bioactive compounds of the snake venom make them particular sources for anticancer agent development. They contain very rich peptide-protein structures. Therefore, they are very susceptible to environmental conditions such as temperature, pH, and light. In this study, Vipera ammodytes transcaucasiana venom was encapsulated in PAMAM-G4 dendrimer by sol-gel method in order to prevent degradation of venom contents from the environmental conditions. For this purpose, nanoparticles were prepared by sol-gel methodology and SEM analyses were performed. U87MG and SHSY5Y neuronal cancer cell lines were treated with different concentrations of venom-containing nanoparticles and cytotoxicity was determined by MTT assay. IC50 values of nanoparticles with snake venom were calculated as 37.24 and 44.64g/ml for U87MG and SHSY5Y cells, respectively. The IC50 values of nanoparticles with snake venom were calculated as 10.07 and 7.9g/ml for U87MG and SHSY5Y cells, respectively. As a result, nanoparticles with V. a. transcaucasiana venom showed remarkably high cytotoxicity. Encapsulation efficiency of nanoparticles with 1mg/ml snake venom was determined as %67 via BCA protein analysis. In conclusion, this method is found to be convenient and useful for encapsulating snake venom as well as being suitable for drug delivery systems.