Avrupa Bilim ve Teknoloji Dergisi, sa.23, ss.99-107, 2021 (Hakemli Dergi)
İnternet kullanımının yaygınlaşmasıyla birlikte insanlar düşüncelerini, o anki duygu durumlarını sosyal medya araçları ve çevrimiçi forumlar üzerinden paylaşmaya başladılar. Bu durum metin verilerinin miktarında büyük bir artışa neden oldu. Başta Twitter platformundan elde edilen veriler olmak üzere sosyal medya kaynaklı veriler duygu analizi, metin sınıflandırma, konu modelleme, ironi tespiti, görüş madenciliği gibi pek çok çalışmada kullanılmaktadır. Bu çalışmalardan biri de duruş tespitidir. Duruş tespiti, bir hedef-yorum çifti için yorum yazarının hedefe yönelik duruşunun yorum metninden otomatik olarak çıkarılması işlemidir. Burada hedef bir insan, olay, durum veya bir ürün olabilir. Duruş tespitinde amaç bir yorumun sahibinin belirli bir hedefe yönelik duruşunun “Destekliyor” / “Desteklemiyor” / “Duruş Yok” olarak sınıflandırılmasıdır. Türkçe dilinde duruş tespiti çalışmalarında kullanılmak üzere hazırlanmış kapsamlı bir veri kümesi bildiğimiz kadarıyla bulunmamaktadır. Çalışmada ilk olarak bir çevrimiçi forumdan veri kazıma yöntemi ile 6 hedef için toplanmış yorumlardan oluşan bir Türkçe Duruş Veri Seti oluşturulmuştur. Veri seti toplam 5031 hedef-yorum çiftinden oluşmaktadır. Her bir hedef-yorum çifti üniversite dil bölümü mezunu kişilerce etiketlenmiştir. Veri seti üzerinde Naive Bayes, Destek Vektör Makinesi, AdaBoost, XGBoost, Rastgele Orman ve Evrişimli Sinir Ağı yöntemleri ile duruş tespit analizi yapılarak sonuçlar paylaşılmıştır. Metin temsili olarak sözcük torbası, terim frekansı – ters doküman frekansı ve kelime gömme yöntemleri kullanılmıştır. Performans değerlendirmesinde Matthews Korelasyon Katsayısı kullanılmıştır. Yapılan deneylerde en iyi sonuçların XGBoost ve Evrişimli Sinir Ağı yöntemleri ile elde edildiği gözlemlenmiştir. Oluşturulan Evrişimli Sinir Ağı modelinden çıkartılan özniteliklere entegre grandyanlar yöntemi uygulanarak girdi verilerindeki özniteliklerin model tahminine katkıları incelenmiş; yazılan bir yorumdaki her kelimenin modelin tahminine katkısı görselleştirilerek örneklerle sunulmuştur.