Depremselliğin önemli olduğu Türkiye’de yapı elemanları, yatay yükler altında gerekli ve yeterli performansı gösterebilmeleri açısından, yük taşıma kapasitesinde ve sistem sünekliğinde önemli artışa neden olan lifli polimer (LP) malzeme ile güçlendirilmektedir. Bu çalışmada, doğrusal olmayan sonlu eleman yöntemi kullanılarak LP ile güçlendirilmiş betonarme kirişlerin, doğrusal olmayan analizleri gerçekleştirilmiştir. Çalışmada geçmişte yapılan deneysel çalışmalar dikkate alınarak ANSYS programında sonlu eleman modelleri oluşturulmuştur. Literatürdeki deneysel çalışmalarda kullanılan CFRP malzemenin sistem olarak mekanik özellikleri ASTM D7522 standartlarına uygun olarak laboratuvar şartlarında test edilmiştir. Deney sonuçlarından elde edilen CFRP sisteme ait malzeme özellikleri sonlu elemanlar modellerinde dikkate alınmış ve betonarme kirişler statik yükler altında analiz edilmiştir. Sonlu eleman modelleri CFRP genişliği, uygulanan karbon lif kat adedi ve kiriş yan yüzeylerindeki sargı yüksekliğine bağlı olarak farklılaştırılarak CFRP sistemin kiriş performansı üzerine etkileri araştırılmıştır. Uygulanan CFRP sistemin kiriş tabanındaki genişliğinin ve CFRP sistemdeki karbon fiber katman sayılarının arttırılması ile betonarme kirişlerin yük taşıma kapasitesinin arttığı görülmektedir. Kiriş yan yüzeylerinin de CFRP ile sarılması durumunda, kirişin sadece alt yüzeyinin güçlendirildiği referans kirişe göre yük taşıma kapasitesinde önemli bir artış gözlemlenmiştir.
In Turkey, structural elements are strengthened with
fiber polymer (LP) that causes a considerable
increase in load bearing capacity and ductility system
in order to exemplify a necessary and sufficient
performance under lateral loads. In this study,
nonlinear analyses of reinforced concrete beams
retrofitted with LP material are performed by using
nonlinear finite element (FE) method. Considering
the laboratory tests done by Pham and Al-Mahaidi,
finite element models of the beams are created in the
ANSYS program. The mechanical properties of the
CFRP (Carbon Fiber Reinforced Polymer) material
used in the experimental studies in the literature have
been tested in accordance with ASTM D7522
standards. According to the results of the laboratory
experiment, the CFRP system was modeled
mathematically and reinforced concrete beams were
analyzed under static loads. The load-displacement
curve results obtained from the FE analyses and the
experimental data showed good match.
After verification of the FE model, some parametric
studies were investigated to evaluate the behavior of
the reinforced concrete beams with CFRP materials.
CFRP width along the bottom side of the beams, the
number of layers in the CFRP system and the heigth
of the materials applied along the front and back
surfaces of the beams were varied in the analyses.
Load capacity, the maximum stress-strain curve
results on the concrete fibers along the bottom side of
the beams, strain values on the CFRP system under
the maximum load and the stress-strain values along
the longitudinal reinforcement were obtained from
the FE parametric analyses. The results showed that
when the CFRP width increases the load capacity of
the beam increases. Models indicates that if the
CFRP layers are increased the load capacities are
enhanced up to 6% and 16.5% on the beams with 3
layers and 4 layers, respectively. In the beams with
CFRP systems along the front and back surfaces, the
load capacities are improved by 27%, 33% and 36%
when the CFRP heights on the surfaces are 86 mm,
130 mm, and 172 mm., respectively.
Stress-strain curves obtained from the FE analyses
reveals that the concrete strain values on the tension side of the beams are increased by the increment on
the width of the CFRP system. Although, the strain
values on concrete fibers are decreased with the
increase in CFRP layers and the height along the
surfaces.
In the FE models, the CFRP strain values are
determined under the maximum load and compared
with the values according to ACI 440 standard. The
results indicates that the strain values are well
beyond the fracture strain limit. Therefore, the CFRP
system were ruptured from the bottom face of the
beam as obtained during the laboratory testing.
The stress-strain curves of the longitudinal
reinforcement are evaluated for each parmetric
analyses. The stress values are decreased by the
increase in the CFRP width, number of layers and the
CFRP height along the faces. This case showed that
the CFRP system contributed to the tension capacity
of the beams and the ductility of the beams were
decreased.