Analyzing the Spread of Misinformation on Social Networks: A Process and Software Architecture for Detection and Analysis

Creative Commons License

Duzen Z., Riveni M., AKTAŞ M. S.

Computers, vol.12, no.11, 2023 (ESCI) identifier

  • Publication Type: Article / Article
  • Volume: 12 Issue: 11
  • Publication Date: 2023
  • Doi Number: 10.3390/computers12110232
  • Journal Name: Computers
  • Journal Indexes: Emerging Sources Citation Index (ESCI), Scopus
  • Keywords: community detection, misinformation detection, network analysis, process for network data analysis
  • Yıldız Technical University Affiliated: Yes


The rapid dissemination of misinformation on social networks, particularly during public health crises like the COVID-19 pandemic, has become a significant concern. This study investigates the spread of misinformation on social network data using social network analysis (SNA) metrics, and more generally by using well known network science metrics. Moreover, we propose a process design that utilizes social network data from Twitter, to analyze the involvement of non-trusted accounts in spreading misinformation supported by a proof-of-concept prototype. The proposed prototype includes modules for data collection, data preprocessing, network creation, centrality calculation, community detection, and misinformation spreading analysis. We conducted an experimental study on a COVID-19-related Twitter dataset using the modules. The results demonstrate the effectiveness of our approach and process steps, and provides valuable insight into the application of network science metrics on social network data for analysing various influence-parameters in misinformation spreading.