On the Exponential Diophantine Equation $(6m^{2}+1)^{x}+(3m^{2}-1)^{y}=(3m)^{z}$


Creative Commons License

ALAN M., BİRATLI R. G.

Fundamental journal of mathematics and applications (Online), cilt.5, sa.3, ss.174-180, 2022 (Hakemli Dergi) identifier

Özet

Let m" role="presentation" >mm be a positive integer. In this paper, we consider the exponential Diophantine equation (6m2+1)x+(3m2−1)y=(3m)z" role="presentation" >(6m2+1)x+(3m21)y=(3m)z(6m2+1)x+(3m21)y=(3m)z and we show that it has only unique positive integer solution (x,y,z)=(1,1,2)" role="presentation" >(x,y,z)=(1,1,2)(x,y,z)=(1,1,2) for all m>1." role="presentation" >m>1.m>1. The proof depends on some results on Diophantine equations and the famous primitive divisor theorem.