A weighted voting ensemble of efficient regularized extreme learning machine

Abd Shehab M., Kahraman N.

COMPUTERS & ELECTRICAL ENGINEERING, vol.85, 2020 (SCI-Expanded) identifier identifier

  • Publication Type: Article / Article
  • Volume: 85
  • Publication Date: 2020
  • Doi Number: 10.1016/j.compeleceng.2020.106639
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Aerospace Database, Applied Science & Technology Source, Communication Abstracts, Compendex, Computer & Applied Sciences, INSPEC, Metadex, zbMATH, Civil Engineering Abstracts
  • Yıldız Technical University Affiliated: Yes


The exact evaluation of Extreme Learning Machine (ELM) compactness is difficult due to the randomness in hidden layer nodes number, weight and bias values. To overcome this randomness, and other problems such as resultant overfitting and large variance, a selective weighted voting ensemble model based on regularized ELM is investigated. It can strongly enhance the overall performance including accuracy, variance and time consumption. Efficient Prediction Sum of Squares (PRESS) criteria that utilizing Singular Value Decomposition (SVD) is proposed to address the slow execution. Furthermore, an ensemble pruning approach based on the eigenvalues for the input weight matrix is developed. In this work, the ensemble base classifiers weights are calculated based on the same PRESS error metric used for the solutions of the output weight vector (beta) in RELM, thus, it can reduce computational cost and space requirement. Different state-of-the-art learning approaches and various well-known facial expressions faces and object recognition benchmark datasets were examined in this work. (C) 2020 Elsevier Ltd. All rights reserved.