The role of effective catalysts for hydrogen production: A performance evaluation


Goren A. Y., Temiz M., ERDEMİR D., Dincer I.

Energy, cilt.315, 2025 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 315
  • Basım Tarihi: 2025
  • Doi Numarası: 10.1016/j.energy.2024.134257
  • Dergi Adı: Energy
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, Aquatic Science & Fisheries Abstracts (ASFA), CAB Abstracts, Communication Abstracts, Compendex, Computer & Applied Sciences, Environment Index, INSPEC, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Biological processes, Catalyst, Efficiency, Electrolysis, Energy, Hydrogen production, Nanomaterials, Sustainable production
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

In recent years, research on hydrogen (H2) production for alternative and environmentally-benign energy solution as fuel, storage medium and feedstock has been one of the most highly demanded subjects. It aims to reduce the pressures set by carbon dioxide emissions and the depletion of fossil fuel supplies. Nevertheless, large-scale H2 production is limited by its high cost and low yield. The distinct photo-electrochemical characteristics of catalysts have shown them to have great promise for enhancing the production of H2. This article presents an updated and comprehensive review of enhanced H2 production using various catalysts in biological, thermochemical, and water-based processes. Various operational parameters (reactor configuration, catalyst dosage, catalyst type, catalyst modification methods, temperature, pH, and inoculum type) are summarized to improve the H2 production performance and reduce the environmental impacts and costs of these processes. For instance, in dark fermentation, biological H2 production is enhanced by 3.2–38 % with certain metal catalysts. Overall, results revealed that catalysts, specifically inorganic catalysts such as iron, nickel, titanium oxide, and silver, have improved the production rate of H2. This review has provided the application fields and working principles of catalysts in different H2 production processes. Finally, we suggested the main concerns that need to be prioritized in the long-term advancement of H2 production using catalysts.