COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, vol.47, no.2, pp.432-443, 2018 (SCI-Expanded)
The least-squares regression estimator can be very sensitive in the presence of multicollinearity and outliers in the data. We introduce a new robust estimator based on the MM estimator. By considering weights, also the resulting MM-Liu estimator is highly robust, but also the estimation of the biasing parameter is robustified. Also for high-dimensional data, a robust Liu-type estimator is introduced, based on the Partial Robust M-estimator. Simulation experiments and a real dataset show the advantages over the standard estimators and other robustness proposals.