Projecting the number of new HIV infections to formulate the "Getting to Zero" strategy in Illinois, USA


Khanna A. S., Edali M., Ozik J., Collier N., Hotton A., Skwara A., ...Daha Fazla

MATHEMATICAL BIOSCIENCES AND ENGINEERING, cilt.18, sa.4, ss.3922-3938, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 18 Sayı: 4
  • Basım Tarihi: 2021
  • Doi Numarası: 10.3934/mbe.2021196
  • Dergi Adı: MATHEMATICAL BIOSCIENCES AND ENGINEERING
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, BIOSIS, Compendex, EMBASE, MathSciNet, MEDLINE, zbMATH, Directory of Open Access Journals
  • Sayfa Sayıları: ss.3922-3938
  • Anahtar Kelimeler: HIV infections, pre-exposure prophylaxis, computer simulation, sexual and gender minorities, preventive medicine, PREEXPOSURE PROPHYLAXIS INITIATION, LOCALLY WEIGHTED REGRESSION, NATIONAL HIV/AIDS STRATEGY, MATHEMATICAL-MODELS, UNITED-STATES, TRANSMISSION, CARE, PREVENTION, RETENTION, PROGRAM
  • Yıldız Teknik Üniversitesi Adresli: Hayır

Özet

Objectives: Getting to Zero (GTZ) initiatives focus on expanding use of antiretroviral treatment (ART) and pre-exposure prophylaxis (PrEP) to eliminate new HIV infections. Computational models help inform policies for implementation of ART and PrEP continuums. Such models, however, vary in their design, and may yield inconsistent predictions. Using multiple approaches can help assess the consistency in results obtained from varied modeling frameworks, and can inform optimal implementation strategies. Methods: A study using three different modeling approaches is conducted. Two approaches use statistical time series analysis techniques that incorporate temporal HIV incidence data. A third approach uses stochastic stimulation, conducted using an agent-based network model (ABNM). All three approaches are used to project HIV incidence among a key population, young Black MSM (YBMSM), over the course of the GTZ implementation period (2016-2030). Results: All three approaches suggest that simultaneously increasing PrEP and ART uptake is likely to be more effective than increasing only one, but increasing ART and PrEP by 20% points may not eliminate new HIV infections among YBMSM. The results further suggest that a 20% increase in ART is likely to be more effective than a 20% increase in PrEP. All three methods consistently project that increasing ART and PrEP by 30% simultaneously can help reach GTZ goals. Conclusions: Increasing PrEP and ART uptake by about 30% might be necessary to accomplish GTZ goals. Such scale-up may require addressing psychosocial and structural barriers to engagement in HIV and PrEP care continuums. ABNMs and other flexible modeling approaches can be extended to examine specific interventions that address these barriers and may provide important data to guide the successful intervention implementation.