Super aligned carbon nanotubes for interfacial modification of hole transport layer in polymer solar cells


Ali A., Kazici M., Bozar S., Asghar M. A., Alwadai N., Kahveci C., ...Daha Fazla

Sustainable Materials and Technologies, cilt.35, 2023 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 35
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.susmat.2023.e00569
  • Dergi Adı: Sustainable Materials and Technologies
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Compendex, INSPEC
  • Anahtar Kelimeler: Carbon nanotubes sheets, Hole transport layer, Interfacial engineering, Polymer solar cells
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

© 2023This work presents a facile and innovative method for the insertion of super aligned carbon nanotubes (CNTs) as sheets over and within poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as an efficient hole transport layer (HTL) in the inverted type polymer solar cell. CNTs sheets drawn from the vertically grown CNTs arrays were extracted via a sharp-edge blade and were directly transferred to the surface of PEDOT:PSS followed by the deposition of thermally evaporated silver electrode. All the characteristic photovoltaic parameters of the device have been improved with the insertion of special patterened CNTs sheets as compared to the standards device (without CNTs sheets). Power conversion efficiency (PCE) improved from 2.14% to 3.69% with the increased short circuit current density from 9.12 mAcm−2 to 11.58 mAcm−2 and fill factor from 0.48 to 0.58, respectively. Scanning electron microscopy (SEM) images revealed the successful insertion of CNTs without any destructive impact on the integrity of CNTs structure. Moreover, the performance and stability of the device have also been optimized by increasing the thickness of CNTs sheets. Electrochemical impedance spectroscopy (EIS) showed the reduction in charge transfer resistance on replacement of CNTs sheets-modified PEDOT:PSS as HTL as compared to simple PEDOT:PSS, which may be attributed to the creation of ordered steps which provided cascade routes for the better charge (holes) collection. Facile modification of the anode materials with improved device performance for designing of new device architecture will help scale-up production of low-cost, stable, and efficient polymer solar cells.