Model-independent search for pair production of new bosons decaying into muons in proton-proton collisions at √s = 13 TeV


Hayrapetyan A., Tumasyan A., Adam W., Andrejkovic J., Bergauer T., Chatterjee S., ...Daha Fazla

Journal of High Energy Physics, cilt.2024, sa.12, 2024 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 2024 Sayı: 12
  • Basım Tarihi: 2024
  • Doi Numarası: 10.1007/jhep12(2024)172
  • Dergi Adı: Journal of High Energy Physics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, INSPEC, zbMATH, Directory of Open Access Journals, Nature Index
  • Anahtar Kelimeler: Beyond Standard Model, Hadron-Hadron Scattering
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

The results of a model-independent search for the pair production of new bosons within a mass range of 0.21 < m < 60 GeV, are presented. This study utilizes events with a four-muon final state. We use two data sets, comprising 41.5 fb−1 and 59.7 fb−1 of proton-proton collisions at s = 13 TeV, recorded in 2017 and 2018 by the CMS experiment at the CERN LHC. The study of the 2018 data set includes a search for displaced signatures of a new boson within the proper decay length range of 0 < cτ < 100 mm. Our results are combined with a previous CMS result, based on 35.9 fb−1 of proton-proton collisions at s = 13 TeV collected in 2016. No significant deviation from the expected background is observed. Results are presented in terms of a model-independent upper limit on the product of cross section, branching fraction, and acceptance. The findings are interpreted across various benchmark models, such as an axion-like particle model, a vector portal model, the next-to-minimal supersymmetric standard model, and a dark supersymmetric scenario, including those predicting a non-negligible proper decay length of the new boson. In all considered scenarios, substantial portions of the parameter space are excluded, expanding upon prior results.