Comparative analysis of classification algorithms on the breast cancer recurrence using machine learning


Mikhailova V., Anbarjafari G.

MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2022 (Journal Indexed in SCI) identifier identifier identifier

  • Publication Type: Article / Article
  • Publication Date: 2022
  • Doi Number: 10.1007/s11517-022-02623-y
  • Journal Name: MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING
  • Journal Indexes: Science Citation Index Expanded, Scopus, Academic Search Premier, ABI/INFORM, Applied Science & Technology Source, BIOSIS, Biotechnology Research Abstracts, Business Source Elite, Business Source Premier, CINAHL, Compendex, Computer & Applied Sciences, EMBASE, INSPEC, MEDLINE
  • Keywords: Breast cancer, Machine learning, Medical imaging, J48, Multilayer Perceptron, RISK

Abstract

This paper presents a comparative evaluation of classification algorithms using Waikato Environment for Knowledge Analysis (WEKA) software. The main goal of the paper is to conduct a comprehensive comparison and determine which predictive modelling technique is best for the problem of classifying breast cancer recurrence. The dataset for this study consists of 286 instances (201 instances belong to recurrence class and 85 instances belong to non-recurrence class) and 10 attributes. Comparison analysis is conducted for Naive Bayes, J48, K*, Random Forest, Multilayer Perceptron (MLP) and Support Vector Machine (SVM) models using different parameters. The performance of the developed models is calculated using the following evaluation metrics: accuracy, precision, sensitivity, specificity, mean absolute error, ROC curves and AUC values. Contribution of the attributes to the classification models is assessed by measuring information gain. Results show that J48 model and the SVM algorithm give the highest accuracy, which is 75.5% and 79.6%, respectively. Implementation of SVM algorithm also shows the highest sensitivity of 99%, while the highest precision is obtained by MLP algorithm which is 79%. In addition, SVM algorithm possesses the lowest mean absolute error. Furthermore, by measuring information gain, it is revealed that a degree of malignant tumour contributes more than other attributes to recurrence of breast cancer.