On the Possible Automorphism Groups of a Steiner Quintuple System of Order 21


Creative Commons License

Kolotoglu E., Magliveras S. S.

JOURNAL OF COMBINATORIAL DESIGNS, cilt.22, ss.495-505, 2014 (SCI-Expanded) identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 22
  • Basım Tarihi: 2014
  • Doi Numarası: 10.1002/jcd.21370
  • Dergi Adı: JOURNAL OF COMBINATORIAL DESIGNS
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.495-505
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

A Steiner system S(4, 5, v) is called a Steiner quintuple systems of order v. The smallest order for which the existence, or otherwise, of a Steiner quintuple system is unknown is 21. In this article, we prove that, if an S(4, 5, 21) exists, the order of its full automorphism group is 1, 2, 3, 4, 5, 6, 7, or 10. (C) 2013 Wiley Periodicals, Inc.