Life cycle assessment of nuclear-based hydrogen and ammonia production options: A comparative evaluation


BİÇER Y., Dincer I.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol.42, no.33, pp.21559-21570, 2017 (Journal Indexed in SCI) identifier identifier

  • Publication Type: Article / Article
  • Volume: 42 Issue: 33
  • Publication Date: 2017
  • Doi Number: 10.1016/j.ijhydene.2017.02.002
  • Journal Name: INTERNATIONAL JOURNAL OF HYDROGEN ENERGY
  • Journal Indexes: Science Citation Index Expanded, Scopus
  • Page Numbers: pp.21559-21570

Abstract

In this study, nuclear energy based hydrogen and ammonia production options ranging from thermochemical cycles to high-temperature electrolysis are comparatively evaluated by means of the life cycle assessment (LCA) tool. Ammonia is produced by extracting nitrogen from air and hydrogen from water and reacting them through nuclear energy. Since production of ammonia contributes about 1% of global greenhouse gas (GHG) emissions, new methods with reduced environmental impacts are under close investigation. The selected ammonia production systems are (i) three step nuclear Cu-Cl thermochemical cycle, (ii) four step nuclear Cu-Cl thermochemical cycle, (iii) five step nuclear Cu-Cl thermochemical cycle, (iv) nuclear energy based electrolysis, and (v) nuclear high temperature electrolysis. The electrolysis units for hydrogen production and a Haber-Bosch process for ammonia synthesis are utilized for the electrolysis-based options while hydrogen is produced thermochemically by means of the process heat available from the nuclear power plants for thermochemical based hydrogen production systems. The LCA results for the selected ammonia production methods show that the nuclear electrolysis based ammonia production method yields lower global warming and climate change impacts while the thermochemical based options yield higher abiotic depletion and acidification values. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.