IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, cilt.32, sa.8, 2022 (SCI-Expanded)
An actively shielded wide-bore magnet system has been designed for magnetic resonance imaging. The gradient-based optimization solver of COMSOL Multiphysics has been used to obtain an optimum geometrical arrangement of symmetrical electromagnets in the magnetic resonance imaging (MRI) system. To generate a high and homogeneous magnetic field, we employed a second-generation rare-earth barium-copper-oxide (REBCO) high-temperature superconductor (HTS), which was wound into 10 double pancake coils (DPC). The dimensions of the DPC sets have been chosen considering the size of REBCO HTS tapes, and the optimized design solution provides magnetic field, stray field, and current passing through the HTS tapes on each DPC set. The design details of a 1.5 T actively shielded magnet as well as the sensitivity analysis of the inhomogeneity, stray field, and currents with respect to coil positions have been presented. Optimum parameters for various designs are listed. The inhomogeneity of 1.23 ppm in the 200 mm diameter of spherical volume (DSV) and a stray field of as low as 0.05 G outside of the 5 m distance were achieved. Additionally, a low peak field of 2.40 T in DPC sets has been accomplished.