On a generalization of lifted polynomials over finite fields and their applications to DNA codes


Oztas E. S. , Siap I.

INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, cilt.92, ss.1976-1988, 2015 (SCI İndekslerine Giren Dergi)

  • Cilt numarası: 92 Konu: 9
  • Basım Tarihi: 2015
  • Doi Numarası: 10.1080/00207160.2014.930449
  • Dergi Adı: INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
  • Sayfa Sayısı: ss.1976-1988

Özet

In this paper, we generalize the lifted polynomials which generate reversible codes over F-q, a finite field with q element. Lifted polynomials are introduced by the authors Oztas and Siap [Lifted polynomials over F-16 and their applications to DNA codes, Filomat 27(3) (2013), pp. 459-466] over F-16. Lifted polynomials have proven to be very advantageous. They are easy to construct and they can be used to construct codes with specific properties such as dimension and the length of codes. We also generalize the 4(k)-lifted polynomials which lead to reversible and reversible complement DNA codes over . Further we construct examples of codes over F-8, F-9, F-16 and F-256 that have the best possible parameters or attain the Griesmer bound, hence they are optimal codes generated by lifted polynomials.