The Performance Comparison of Gene Co-expression Networks of Breast and Prostate Cancer using Different Selection Criteria


Creative Commons License

Cingiz M. O., Biricik G., Diri B.

INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES, cilt.13, ss.500-510, 2021 (SCI-Expanded) identifier identifier identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 13
  • Basım Tarihi: 2021
  • Doi Numarası: 10.1007/s12539-021-00440-9
  • Dergi Adı: INTERDISCIPLINARY SCIENCES-COMPUTATIONAL LIFE SCIENCES
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Agricultural & Environmental Science Database, BIOSIS, Biotechnology Research Abstracts, EMBASE, MEDLINE
  • Sayfa Sayıları: ss.500-510
  • Yıldız Teknik Üniversitesi Adresli: Evet

Özet

Gene co-expression networks (GCN) present undirected relations between genes to understand molecular structures behind the diseases, including cancer. The utilization of various biological datasets and gene network inference (GNI) algorithms can reveal meaningful gene-gene interactions of GCNs. This study applies three GNI algorithms on mRNA gene expression, RNA-Seq, and miRNA-target genes datasets to infer GCNs of breast and prostate cancers. To evaluate the performance of the GCNs, we utilize overlap analysis via literature data, topological assessment, and Gene Ontology-based biological assessment. The results emphasize how the selection of biological datasets and GNI algorithms affect the performance results on different evaluation criteria. GCNs on microarray gene expression data slightly outperform in overlap analysis. Also, GCNs on RNA-Seq and gene expression datasets follow scale-free topology. The biological assessment results are close to each other on all biological datasets. C3NET algorithm-based GCNs did not contain any biological assessment modules; therefore, it is not optimal for biological assessment. GNI algorithms' selection did not change the overlap analysis and topological assessment results. Our primary objective is to compare the performance results of biological datasets and GNI algorithms based on different evaluation criteria. For this purpose, we developed the GNIAP R package that enables users to select different GNI algorithms to infer GCNs. The GNIAP R package also provides literature-based overlap analysis, and topological and biological analyses on GCNs. Users can access the GNIAP R package via .